Numerical solution of time-dependent diffusion equations with nonlocal boundary conditions via a fast matrix approach
نویسندگان
چکیده
One-dimensional parabolic equation; Nonlocal boundary conditions; Taylor approximation; Operational matrices; Krylov subspace iterative methods; Restarted GMRES Abstract This article contributes a matrix approach by using Taylor approximation to obtain the numerical solution of one-dimensional time-dependent parabolic partial differential equations (PDEs) subject to nonlocal boundary integral conditions. We first impose the initial and boundary conditions to the main problems and then reach to the associated integro-PDEs. By using operational matrices and also the completeness of the monomials basis, the obtained integro-PDEs will be reduced to the generalized Sylvester equations. For solving these algebraic systems, we apply a famous technique in Krylov subspace iterative methods. A numerical example is considered to show the efficiency of the proposed idea.
منابع مشابه
On the Numerical Solution of the Diffusion Equation with a Nonlocal Boundary Condition
Parabolic partial differential equations with nonlocal boundary specifications feature in the mathematical modeling of many phenomena. In this paper, numerical schemes are developed for obtaining approximate solutions to the initial boundary value problem for one-dimensional diffusion equation with a nonlocal constraint in place of one of the standard boundary conditions. The method of lines (M...
متن کاملRitz Method Application to Bending, Buckling and Vibration Analyses of Timoshenko Beams via Nonlocal Elasticity
Bending, buckling and vibration behaviors of nonlocal Timoshenko beams are investigated in this research using a variational approach. At first, the governing equations of the nonlocal Timoshenko beams are obtained, and then the weak form of these equations is outlined in this paper. The Ritz technique is selected to investigate the behavior of nonlocal beams with arbitrary boundary conditions ...
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملNumerical Solution of Two-Dimensional Hyperbolic Equations with Nonlocal Integral Conditions Using Radial Basis Functions
This paper proposes a numerical method to the two-dimensional hyperbolic equations with nonlocal integral conditions. The nonlocal integral equation is of major challenge in the frame work of the numerical solutions of PDEs. The method benefits from collocation radial basis function method, the generalized thin plate splines radial basis functions are used.Therefore, it does not require any str...
متن کامل